Verywell Mind content is rigorously reviewed by a team of qualified and experienced fact checkers. Fact checkers review articles for factual accuracy, relevance, and timeliness. We rely on the most current and reputable sources, which are cited in the text and listed at the bottom of each article. Content is fact checked after it has been edited and before publication. Learn more.
Table of Contents Table of Contents Trending Videos Close this video playerThe independent variable (IV) in psychology is the characteristic of an experiment that is manipulated or changed by researchers, not by other variables in the experiment.
For example, in an experiment looking at the effects of studying on test scores, studying would be the independent variable. Researchers are trying to determine if changes to the independent variable (studying) result in significant changes to the dependent variable (the test results).
In general, experiments have these three types of variables: independent, dependent, and controlled.
If you are having trouble identifying the independent variables of an experiment, there are some questions that may help:
Researchers are interested in investigating the effects of the independent variable on other variables, which are known as dependent variables (DV). The independent variable is one that the researchers either manipulate (such as the amount of something) or that already exists but is not dependent upon other variables (such as the age of the participants).
Below are the key differences when looking at an independent variable vs. dependent variable.
There can be all different types of independent variables. The independent variables in a particular experiment all depend on the hypothesis and what the experimenters are investigating.
Independent variables also have different levels. In some experiments, there may only be one level of an IV. In other cases, multiple levels of the IV may be used to look at the range of effects that the variable may have.
In an experiment on the effects of the type of diet on weight loss, for example, researchers might look at several different types of diet. Each type of diet that the experimenters look at would be a different level of the independent variable while weight loss would always be the dependent variable.
To understand this concept, it's helpful to take a look at the independent variable in research examples.
A researcher wants to determine if the color of an office has any effect on worker productivity. In an experiment, one group of workers performs a task in a yellow room while another performs the same task in a blue room. In this example, the color of the office is the independent variable.
A business wants to determine if giving employees more control over how to do their work leads to increased job satisfaction. In an experiment, one group of workers is given a great deal of input in how they perform their work, while the other group is not. The amount of input the workers have over their work is the independent variable in this example.
Educators are interested in whether participating in after-school math tutoring can increase scores on standardized math exams. In an experiment, one group of students attends an after-school tutoring session twice a week while another group of students does not receive this additional assistance. In this case, participation in after-school math tutoring is the independent variable.
Researchers want to determine if a new type of treatment will lead to a reduction in anxiety for patients living with social phobia. In an experiment, some volunteers receive the new treatment, another group receives a different treatment, and a third group receives no treatment. The independent variable in this example is the type of therapy.
Sometimes varying the independent variables will result in changes in the dependent variables. In other cases, researchers might find that changes in the independent variables have no effect on the variables that are being measured.
At the outset of an experiment, it is important for researchers to operationally define the independent variable. An operational definition describes exactly what the independent variable is and how it is measured. Doing this helps ensure that the experiments know exactly what they are looking at or manipulating, allowing them to measure it and determine if it is the IV that is causing changes in the DV.
If you are designing an experiment, here are a few tips for choosing an independent variable (or variables):
It is also important to be aware that there may be other variables that might influence the results of an experiment. Two other kinds of variables that might influence the outcome include:
Extraneous variables can also include demand characteristics (which are clues about how the participants should respond) and experimenter effects (which is when the researchers accidentally provide clues about how a participant will respond).
Verywell Mind uses only high-quality sources, including peer-reviewed studies, to support the facts within our articles. Read our editorial process to learn more about how we fact-check and keep our content accurate, reliable, and trustworthy.
By Kendra Cherry, MSEd
Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."
Verywell Mind's content is for informational and educational purposes only. Our website is not intended to be a substitute for professional medical advice, diagnosis, or treatment.
Ⓒ 2024 Dotdash Media, Inc. — All rights reserved Verywell Mind is part of the Dotdash Meredith publishing family.We and our 100 partners store and/or access information on a device, such as unique IDs in cookies to process personal data. You may accept or manage your choices by clicking below, including your right to object where legitimate interest is used, or at any time in the privacy policy page. These choices will be signaled to our partners and will not affect browsing data.
Store and/or access information on a device. Use limited data to select advertising. Create profiles for personalised advertising. Use profiles to select personalised advertising. Create profiles to personalise content. Use profiles to select personalised content. Measure advertising performance. Measure content performance. Understand audiences through statistics or combinations of data from different sources. Develop and improve services. Use limited data to select content. List of Partners (vendors)